Series-parallel posets and the Tutte polynomial

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Series-parallel posets and the Tutte polynomial

We investigate the Tutte polynomial f(P; t, z) of a series-parallel partially ordered set P. We show that f(P) can be computed in polynomial-time when P is series-parallel and that series-parallel posets having isomorphic deletions and contractions are themselves isomorphic. A formula forf’(P*) in terms off(P) is obtained and shows these two polynomials factor over Z[t, z] the same way. We exam...

متن کامل

Series and parallel reductions for the Tutte polynomial

We discuss reducing the number of steps involved in computing the Tutte polynomial of a matroid by using series and parallel reductions in conjunction with the usual deletion and contraction operations. c © 2000 Elsevier Science B.V. All rights reserved.

متن کامل

Retractions onto series-parallel posets

The poset retraction problem for a poset P is whether a given poset Q containing P as a subposet admits a retraction onto P, that is, whether there is a homomorphism from Q onto P which fixes every element of P. We study this problem for finite series-parallel posets P. We present equivalent combinatorial, algebraic, and topological charaterisations of posets for which the problem is tractable,...

متن کامل

On the tutte polynomial of benzenoid chains

The Tutte polynomial of a graph G, T(G, x,y) is a polynomial in two variables defined for every undirected graph contains information about how the graph is connected. In this paper a simple formula for computing Tutte polynomial of a benzenoid chain is presented.

متن کامل

The Permutahedron of Series-parallel Posets

The permutahedron Perm(P) of a poset P is defined as the convex hull of those permutations that are linear extensions of P. Von Arnim et al. (1990) gave a linear description of the permutahedron of a series-parallel poset. Unfortunately, their main theorem characterizing the facet defining inequalities is only correct for not series-decomposable posets. We do not only give a proof of the revise...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1996

ISSN: 0012-365X

DOI: 10.1016/0012-365x(95)00037-w